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Solution to Assignment 9

Section 9.1:

(8). Take an =
(−1)n√

n
. You may use definition to show it converges, but later you can use the

Alternating Test.

(9). For ε > 0, there is some n0 such that

|
n∑

k=m

ak| < ε/2 , ∀m,n ≥ n0 .

But then
nan = (n− n0)an + n0an ≤ an0 + · · ·+ an + n0an < ε/2 + n0an .

As
∑
an converges implies limn→∞ an = 0, we can find some n1 ≥ n0 such that n0an < ε/2 for

all n ≥ n1. Putting things together, for n ≥ n1,

0 ≤ nan <
ε

2
+ n0an < 2× ε

2
= ε .

(10). Take an = 1/(n log n), n ≥ 2, by the Integral Test or other means, you get the desired
result.

(11). The assumption implies that there is some α and n0 such that |n2an−α| ≤ 1 for all n ≥ n0.
Therefore, ∣∣∣∣∣

n∑
k=m

ak

∣∣∣∣∣ ≤ (|α|+ 1)
n∑

k=m

1

k2
, n,m ≥ n0 .

As
∑
n−2 < ∞, for ε > 0, there is some n1 ≥ n0 such that

∑n
k=m k

−2 < ε/(|α| + 1), so
|
∑n

k=m ak| < ε for all m,n ≥ n1 too.

(13a). √
n+ 1−

√
n√

n
=

1

(
√
n+ 1 +

√
n)
√
n
≥ 1

2(n+ 1)
.

As
∑

1/(n+ 1) is divergent, this series is also divergent.

(13b). √
n+ 1−

√
n

n
=

1

(
√
n+ 1 +

√
n)n
≤ 1

n3/2
.

As
∑
n−3/2 <∞, this series is absolutely convergent.

Section 9.2
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1. (a) Let xn := 1
(n+1)(n+2) . We have |xn+1/xn| = (n+ 1)/(n+ 3) = 1− 2/(n+ 3), so

lim
n→∞

n

(
1− |xn+1|

|xn|

)
= 2 > 1 .

By the limit version of Raabe’s Test, the series converges absolutely.

An alternate method. Observe that xn ≤ 1/n2 and
∑

n n
−2 < ∞. By Comparison

test, {
∑
xn} converges absolutely since each xn is positive.

(c) Since limn→∞ 2−1/n = 20 = 1 6= 0. {
∑

2−1/n} diverges.

2. (b) Observing that
1

(n2(n+ 1))1/2
≤ 1

n3/2
,

and the fact that
∑

1/n3/2 <∞, we conclude by the Comparison Test that this series
is absolutely convergent.

(c) Since

|xn+1|
|xn|

=
(n+ 1)!

(n+ 1)n+1
× nn

n!
=

(
1 +

1

n

)−n
→ e−1 < 1 ,

as n→∞, we apply the limit version of Ratio Test to conclude absolute convergence.

An alternate method. xn =
n!

nn
=

n(n− 1) · · · 21

nn · · ·nn
≤ 2

n2
. Therefore by comparison

test, the series diverges.

(d) Denote {xn := (−1)n n
n+1}. Then {limx2n = 1} and {limx2n−1 = −1}. Since there is

no limit (let alone tending to 0), {
∑
xn} diverges. Alternatively, you may argue by

limn→∞ xn does not tend to 0.

3. (b) We have
((log n)−n)1/n = 1/ log n→ 0

as n → ∞, by the limit version of Root Test we conclude that the convergence is
absolute.

(c) See if we can find some n0 such that

(log n)− logn ≤ n−2

for n ≥ n0. Taking log both sides to get

(− log n) log log n ≤ −2 log n ,

which is
− log logn ≤ −2,

and it holds for some n0. Hence the series is convergent by Comparison Test.
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(d) Using log n ≤ n, we have

1

(log n)log logn/n
≥ 1

nlog logn/n
.

Using log log n ≤ log n ≤ n we further have

1

nlog logn/n
≥ 1

nn/n
=

1

n
.

As
∑

n n
−1 =∞, by comparison test∑

n

1

(log n)log logn/n
≥
∑
n

1

n
=∞ .

That is, this series is divergent.

(e) Use Integral Test to the function f(x) = log log x to conclude divergence.

4. (b) Denote {xn := nne−n}. We have |xn|1/n = n/e → ∞ as n → ∞. By the limit ver-
sion of Root Test we have divergence. You may also use the limit version of Ratio Test.

(c) an = e− logn = 1/n is divergent.

(d) We use Ratio Test. We have

|xn+1|
|xn|

=
log(n+ 1)

log n

1

e
√
n+
√
n+1
→ 0 ,

as n→∞. By the limit version of Ratio Test, this series is absolutely convergent.

(e) an = n!e−n. By Ratio Test in Limit Form, an+1/an = e/(n + 1) → 0, hence it is
convergent.

6. A routine application of the Integral Test after letting {f(x) := (ax+ b)−p}. Or reduce it
to the standard case

∑
1/np by applying the Comparison Test in view of

1

(a+ b)pnp
≤ 1

(an+ b)p
≤ 1

np
.

7. (a) Denote {xn := n!
3·5·7···(2n+1)}. Then {

∣∣∣ xn+1

xn

∣∣∣ = n+1
2n+3 →

1
2 < 1}.

By the limit form of Ratio Test, {
∑
xn} converges absolutely.

(b) an = (n!)2/(2n)!. As an+1/an = (n+ 1)2/(2n+ 1)(2n+ 2)→ 1/4, it is convergent by
Ratio Test (Limit Form).

(c) Denote {xn := 2·4···(2n)
3·5···(2n+1)}. Then {

∣∣∣ xn+1

xn

∣∣∣ = 2n+2
2n+3 = 1− 1

2n+3 .} Therefore,

lim
n→∞

n

(
1−

(
1− 1

2n+ 3

))
=

1

2
,

which implies that the series diverges by the limit form of Raabe’s Test.
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8. Note that this series is a rearrangement of a, a2, . . . , an−1, an, . . . , which we already know
is absolutely convergent.
Root test:

|xn|1/n =

{
a(n−1)/n, n = 2k;

an/(n−1), n = 2k-1.

In both cases |xn|1/n < 1. By root test, the infinite series is convergent.
Ratio test:

xn+1

xn
= 1/a > 1 ∀n = 2k + 1, k ∈ N

and
xn+1

xn
= a2 < 1 ∀n = 2k, k ∈ N

We can’t use ratio test to judge if this series is convergent.

17. Applying the limit version of Raabe’s Test

n

(
1− xn+1

xn

)
=

n(q − p)
q + n+ 1

→ q − p , as n→∞ .

Therefore, we have convergence if q − p > 1 and divergence if q − p < 1. When q = p+ 1,∑
n xn =

∑
n 1/(q + n) =∞, so we have divergence in this case.

19. We adopt the notation in the question. Since b1 =
√
A −

√
A1 and bn =

√
A−An−1 −√

A−An > 0,
N∑
k=1

bk =
√
A−

√
A−AN →

√
A as N →∞.

Hence the series converges. Now, let us verify that limn→∞ an/bn = 0. For n > 1,

bn =
√
A−An−1 −

√
A−An =

An −An−1√
A−An−1 +

√
A−An

=
an√

A−An−1 +
√
A−An

.

Using the fact that limn→∞An = A, we conclude that

an
bn

=
√
A−An−1 +

√
A−An → 0 as n→∞.

20. Let bn = an/
√
An where An is the nth partial sum of

∑
an. It is clear that

lim
n

(bn/an) = lim
n

1/
√
An = 0

since
∑
an is divergent. Now we prove

∑
bn is also divergent.

∑
bn ≥

M∑
n=1

bn ≥
M∑
n=1

an/
√
AM =

√
AM ∀M ∈ N

Letting M →∞, we have the desired conclusion.

Supplementary Exercises
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1. Consider
∑∞

n=1 an and let
∑∞

n=1 bn and
∑∞

n=1 cn where bn = a+n and cn = a−n (so an =
a+n − a−n ). Show that

∑∞
n=1 bn and

∑∞
n=1 cn both are divergent to infinity when

∑∞
n=1 an

is conditionally convergent.

Solution. In case one of these series is convergent, say
∑
bn, let us show that

∑
cn is also

convergent, so
∑
|an| =

∑
bn +

∑
cn is also convergent, contradicting that

∑
an is only

conditionally convergent. Let ε > 0, there is some n0 such that |am+1 + · · · + an| < ε/2
for all n,m ≥ n0. On the other hand, choose n1 ≥ n0, bm+1 + · · · + bn < ε/2 for all
n,m ≥ n1. By subtracting these two inequalities and by choosing indices properly, we
have cm+1 + · · ·+ cn < ε for all n,m ≥ n1, done.

2. Show that every conditionally convergent series admits a rearrangement which is diver-
gent to infinity.

Solution. Adapting the notation in the previous problem, first we pick b1, · · · , bn1 such
that b1+· · ·+bn1 > 1+c1. Next, add −c1 to the finite sequence to get {b1, b2, · · · , bn1 ,−c1}.
Then add bn1+1, · · · , bn2 so that b1 + b2 + · · · + bn1 − c1 + bn1+1 + · · · + bn2 > 2 + c2.
Add −c2 to get {b1, b2, · · · , bn1 ,−c1, bn1+1, · · · , bn2 ,−c2}. Then add bn2+1, · · · , bn3 so that
b1 + · · · − c2 + bn2+1 + · · · + bn3 > 3 + c3 . By repeating the construction, we obtain a
rearrangement whose partial sum is greater than any n. Note that this is possible because∑
bn =∞.

Note. A theorem of Riemann states that given any number s including ±∞, there is a
rearrangement on a conditionally convergent series converging to this number. You may
google for it.


